

CutLog®

Module: Sawlog sorting optimization

User guide

http://www.cutlog.com

Tekl STUDIO s.r.o.

Version:March 2nd 2013

CutLog® - Module Sawlog sorting optimization *User guide*

©2013 Tekl STUDIO s.r.o.

CutLog is a trademark of TEKL Studio s.r.o. . Microsoft and Windows are registered trademarks in the United States and other countries of Microsoft Corporation. The official name of Windows is Microsoft Windows Operating System. Pentium is a registered trademark of Intel Corporation. All other brand and product names are are trademarks or registered trademarks of their respective owners.

Content

1.	INTR	RODUCTION	4
2.	MOD	DULE – SAWLOG SORTING OPTIMIZATION	5
3.	PREG	CALCULATION	6
4.	SAW	LOG SORTING OPTIMIZATION	9
	4.1.	SCORE	
4	4.2.	INFLUENCE OF "WEIGHT" OR IMPORTANCE OF BOARDS ON SCORE	14
		INTERPRETATION	
4	4.4.	OPTIMIZATION	
	Reduc	ction of the smallest	
	Reduc	ction of the biggiest	
	Divid	ing maximum values	
		ing minimum values	
	Cumn	nulative results	
5.	EXPO	ORT RESULTS	23
6.	SYST	FEM REQUIREMENTS	

1. Introduction

Sawlog sorting optimization (SSO) is additional module to CutLog[™]. For details about CutLog's functionality please refer to CutLog user guide.

2. Module – Sawlog sorting optimization

This module is available as standalone additional functionality of CutLog software. For working with SSO is necessary to have CutLog already installed.

In case, that you already have bought CutLog, it is necessary to have new software license key. License for SSO is not transferrable from one CutLog license to other.

3. Precalculation

Before SSO itself, is necessary to prepare appropriate data. Input data for SSO are prepared in optimization function *FlexiCut2*.

In first step is necessary to set parameters in FlexiCut2 (the same way, you are working every day). For example:

FlexiCut2		- • ×
Results Show Tools Configuration		
SOI Save Porezy SQL	2D Debug List Yield Segments Sprecher Price simulation PilaMSK Profit	
Criteria Calculate Yield of timber		
Species PIN - Pine		
Group Default Pine		
Middleboard *		
SED 208.00		
Taper 10.00 🗼 mm/m Length 2.45 🗼 m		
Prism timber 2		
Species PIN - Pine Group Default Pine Middleboard SED 208.00 Taper 10.00 mm/m Length 2.45 mm/m Prism timber 2 Settings Batch Other Price Middle boards		
Other Price Middle boards		
Correction I. pass II. Pass Other		
Curvature 0.000 / %		
O Decrease of small end 0.000 🕀 mm diameter (SED) by		
diameter (3LD) by		
	Yield	
	Yield (Invoice sizes) Log volume m3	
Timber	Timber volume total Central timber volume 99%	
Size QTY Volume Price	Price of timber 99%	
	Chips volume Sawdust volume	
	Chips price Sawdust price	

FlexiCut II - Batch	×
Settings Sorting Optimization	
 Preset middle board ("*") All middle boards 	
 Curvature 	Decrease of small end diameter (SED) by
0.000 -> 0.000 x step 0.000 x	0
Diameter	
	Diameter 0
Taper Taper 10.000 ★ mm/m -> 10.000 ★ mm/m step 0.000 ★ Side segments	
Delivery Input file e:\data.csv	Quit
Output file e:\data xlsx	<u>Calculate</u>

Then select menu "Tools/Batch" we start function for batch optimization:

We have set optimization for diameters 200mm to 250mm with step of 1mm.

Here we can choose the way, how middle boards will be selected into results: *"Preset middle board"* – optimization will be run only on board selected in main FlexiCut2 screen. So it can be either "*" for the best middle board or selected.

"All middle boards" into batch process will be added all middle boards also. It means, that optimization will be made for each middle board separately for combination diameter-curvature-taper. This choice is reccomended.

Preparing of data for sorting optimization you can find on tab "Sorting optimization":

FlexiCut II - Batch	alon you can find on tab "corting optin	×
Settings Sorting Optimization		
e:\sortOpt txt	Precalculate	
Delivery		Quit
Input file e:\data.csv		
Output file e:\data xlsx		Calculate
· · · · · · · · · · · · · · · · · · ·		

On the second tab we just set output filename and press "Precalculate button". Resulted file is input file into sorting optimization function.

4. Sawlog sorting optimization

This module can be found in menu "Tools / Sorting optimization".

Optimisation itself consist from two steps:

- 1. Proposition of sorting boxes
- 2. For each middle board making order of boxes by priority from where is appropriate to take sawlogs for production

Sorting optimization	and .			-	
Load Save 10 🖈 Nu	umber of diameters with the best yield			<u>(</u>	alculate
Middleboard 🛛 👻 Weight of the order 🔍 👻	Number of boxes 10	 ✓ Reduction of th ✓ Reduction of th ✓ Dividing maxim ✓ Dividing minim 	e biggiest num values		
SED Score	Yield of timber	Chips volume	Sawdust volume		
	Timber volume total	Yield of chips	Yield of sawdust		
	Price of timber	Border			
				Box	Border
Size Yield Score					
Size Length QTY					
	Timber				

For the beginning is necessary to load file, which has been precalculated in previous step in FlexiCut2's batch export or file saved from this function/

Important: Button save is intended for saving boxes settings together with input data.

After loading of file, you get this screen:

In the left panel on top there is list where is on each line diameter (SED) and appropriate score (counting of score is described later). Mouse click on column header you can resort lines base on that column.

Below diameter list (in case, that middle board is chosen: "*") is list of timber sizes, which are included in resulted score. There is board size, yield for selected diameter and score. List is sorted base on yield of listed timbers.

Bottom table on left. There are all boards, which you get by sawing of selected diameter and selected middle boards.

For example as result of sawing for diameter 200mm, middle board 25x95 you get listed boards (see Picture above)

On the left side there is list of algorithms for making borders between sorting boxes. There are four possible algorithms:

- 1. Reduction of the smallest
- 2. Reduction of the biggest
- 3. Dividing maximum values
- 4. Dividing minimum values

All will be described later. For each algorithm you can show borders (checkboxes near to each type) or select which of them will be modified by user (which results). In addition double-click on particular color field, you can change color of box borders.

"Number of boxes" field means number of sorting boxes.

Below are the results for selected diameter and middle board (Yield, Timber volume, Chips volume...)

Below results you can find chart. On X axis there is log diameter (SED – small end diameter) and on Y axis is score (described later). Also optimization on selected number of boxes is made and marked on chart

together with numbers, base on selected algorithms. For each optimization method are joined average score values in particular boxes. Each sorting optimization is shown by different color and can be hidden.

Under chart is important table. Base on selected algorithm you can see one row for each middle board.

In one column you can see sorting boxes numbered from 1 to requested value.

So, for particular middle board you have numbered boxes from 1 to 'n' = number of boxes.

It means, that box with number 1 has the best average yield for particular timber. Then box number 2 has the second best yield... In practice this means, that for producing of particular timber is the best to take sawlogs from sorting box with number '1', then from box with number '2' etc...

Button [SAVE] you can use for saving results into file. There is also input data saved into output file. So In saved file is everything: input data and sorting boxes borders. You can load that file later and continue with working on it.

Proposed borders of sorting boxes is possible to change manually:

- 1. By moving mouse cursor in chart, you can see green line below it. With it you can move borders. Split or join boxes.
- 2. You are editing only boxes, which are part of selected optimization algorithm.
- 3. You can move borders between boxes. After changing boxes also bottom table is recalculated.
- 4. You can join two boxes. Just press mouse right click and select Join.
- 5. Existing box is possible to split. Just press mouse right-click inside the box and choose "split". Instead of this you can use "double-click" inside the box.
- 6. You are modifying boxes belonging to selected optimization algorithm.

Second option to change borders:

On the right side of chart is table with box numbers and borders. You can directly change borders there. Of course within borders of previous and next box.

After editing of boxes is automatically recalculated bottom table.

Above of list of diameters, there is field, where you can choose particular middle board score. (star - * - means cumulative score for all middle boards)

Picture shows 10 diameters, which has the best yield for middle board 25x95. There is also percentage yield shown in chart.

There is visible only selected number of diameters. (In this case it is 10)

From the bottom table is clear, that for selected optimization (= reduction smallest) is the most optimal box #1, which has the best score (the best average yield). Then it is box #7 etc.

You can take in account also "importance" of boards by size, by selecting order number. Will be explained latter when score counting will be discussed.

4.1. Score

All optimizations works base on score counted from input data. Score for any diameter is counted this way:

For selected middle board are all diameters sorted by yield of timber from the best yield to lowest values. Then are scored assigned to each diameter from the biggiest value to zero. Biggiest value is the value entered into field "*Number of diameters with the best yield*". For example, for value '5' in mentioned fields. (here can enter in account "importance" or weight of board. Each score can be multiplied by importance factor, see next chapter)

Middle board	Small end diameter (SED)	Timber yield	score
12x30	201	38,9	5
12x30	200	38,7	4
12x30	202	38,5	3
12x30	203	38,2	2
12x30	204	37,9	1
12x30	206	37,7	0
12x30	212	37,6	0
12x30	205	37,5	0
12x30	211	37,5	0
12x30	207	37,4	0
12x30	213	37,3	0
12x30	208	37,1	0
12x30	214	37	0
12x30	209	36,7	0
12x30	215	36,7	0
12x30	217	36,5	0
12x30	210	36,4	0
12x30	216	36,4	0
12x30	218	36,2	0
12x30	224	36,1	0

This way is calculated score for all middle boards. For particular diameters are score values *cumulated*.

In case, that for some diameters is yield the same, then biggiest score is assigned to lower diameter. It means, that table above is sorted by yield (from the biggiest to lowest) and by diameter (from lower to bigger).

Greater score means, that it is more universal diameter for different sizes of timber.

4.2. Influence of "weight" or importance of boards on score

In default sort optimization counting has each board the same importance. For example board size produced once a year has influence on board produced every day, in meaning of sorting optimization. This is not always good. For this you have possibility to take this importance/weight into an account. So score counter in previous page can be multiplied by appropriate "factor of occurence", How it is counted?

For example, your daily board production: $10x20...\ 20m^3$ $10x25...\ 30m^3$

Then board factor for 10x20 is = 20/(20+30) = 20/50 = 0,4And for 10x25 je = 30/(20+30) = 30/50 = 0,6

So appropriate score in table for board 10x20 is multiplied by 0,4 and for board 10,25 is multiplied by 0,6

After this are score tables counted together base on diameter and further optimizations are made.

This quantities are entered into CutLog as orders.

However, if you want to use orders for sorting optimization as factor modification, then order must meet some requirements:

- 1. Wood species of order has to be the same as wood species used in precalculation whithin FlexiCut2 function
- 2. Board sizes counted from batch function in FlexiCut2 must be all presented in order and must have non zero quantity

Only when these conditions are met then particular order can be choosen.

4.3. Interpretation

Possible interpretation for	vr boord 24v4E for o	ntimization "raduation	of omolloot"
Possible interpretation to	0 00210 24843 101 0	DOMINIZATION TEOUCIION	or smallest
			or ormanoot .

										-		×
Load Save 5 🚖 Number of diameters with the best yield												
Middle board 24x45 SED Score 5	Number of I	ooxes 10	A V] Reduction] Reduction] Dividing (] Dividing (n of the bi maximum	iggiest i values				
222 5 223 4 224 3 225 2 226 1	Timber volume	nber 59.73 total 0.063 nber 4.52	3 m3		olume 0.0 chips 27	0231 m3		Sawdust vo Yield of sav				
Size Yield v Score		205 206 207	208 209 210	211 220 221 56-7 56-7 10	59.2 58.7 58.7	225 58.2 226 57.7 228	229 230 230	231 232 233	01 235 236	240 241 242	243 245 245	249 250
24x45 2.45 14.00 45x100 2.45 2.00	12x30 24x45 24x60 24x80	1 2 1 2 8 9 7 3 11 12 10 11	3 3 10 4 6 12	4 5 4 5 11 12 5 2 8 9 9 7	6 6 1 6 5 3	2 9 7	8 9 3 4	5 0 11 4 1	11 11 6 8 2 1	12 12 7 1 3 2		 A III

For production of board "24x45" is the best to use sawlogs with diameters 222, 223, 224, 225 and 226mm. (five diameters with the best yield).

But, after sorting into 10 boxes. You should use for producing boards 24x45 box #6 then box #7, then box #8 etc. see picture above.

This prioriting of boxes for particular board is counted base on average yield for particular middle board within sorting box. For all diameters in box available for particular middle board, not only first five diameters. Then are all boxes sorted by counted average yield in box. Box with the biggiest average yield has the biggiest priority (= number 1), box with second biggiest average yield will be number #2 etc...

In the picture above there are only first five diameters, because those was important for optimization. But for counting of box priority for particular middle board are taken all data from precalculation.

4.4. Optimization

There are four different methods of optimization. It is up to user, which optimization method he will choose. All results can be modified base on user needs. User can also save the results for later use.

Reduction of the smallest

Assumption: Diameters with greater score, should be sorting separately and diameters with the lower scores can be merged into one sorting box.

Method:

Let's take chart similar to previous picture. On the beginning of optimization there is number of boxes equal to number of available diameters for which we have input data (created from FlexiCut2 optimization). Our task is reduce number of boxes to requested value.

In each iteration we split two boxes into one. (remove one box). Iterations are repeated until number of boxes are not on requested value.

<u>STEP 1</u>

Box (diameter)	Score	Contains diameters
205	9	205
206	3	206
207	4	207
213	2	213
214	1	214
218	5	218

- 1. We find box with the lowest score. In our case it is 214
- 2. For particular box (214) we found neighbor box, which has lowe score. In our example it is box (= diameter) 213
- 3. New sorting box will contain sawlog diameters 213 and 214 and new average score will be 1.5
- 4. (steps 1 3) are repeated until number of boxes is not equal the value we need

(further steps are for illustration, how optimization works)

<u>STEP 2</u>

Box (diameter)	Score	Contains diameters
205	9	205
206	3	206
207	4	207
213	1,5	213,214
218	5	218

- 5. We found box (=diameter) with the lowest score, in our case it is 213
- 6. For this box (213) we found neighbor box, which has lower score, it is box 207 (score = 4)
- 7. New box, will contain diameter (=boxes) 213, 214 a 207, new scóre will be average = 2,333 (average of score 213,214 a 207)

<u>STEP 3</u>

Box (diameter)	Score	Contains diameters
205	9	205
206	3	206
207	2,333	207,213,214
218	5	218

Results ar 4 sorting boxes:

Box number	Diameter from
1	205
2	206
3	207
4	218

Reduction of the biggiest

Here I Sorting optimization		_			_			-		_ 🗆 🗙
Load Save 5 A	umber of diameters w	ith the best yie	ld					:	<u>C</u> alculate	
Middle board • <t< th=""><th>Yield of t</th><th>boxes 15</th><th></th><th>Chips volur</th><th> Redu Divic Divic Divic 0.0207 n </th><th>uction of the s uction of the l ding maximum ding minimum n3</th><th>biggiest m values n values Sawdust volu</th><th>7.555 555 1.000 1.000</th><th>3</th><th></th></t<>	Yield of t	boxes 15		Chips volur	 Redu Divic Divic Divic 0.0207 n 	uction of the s uction of the l ding maximum ding minimum n3	biggiest m values n values Sawdust volu	7.555 555 1.000 1.000	3	
203 6	Timber volume Price of t	etotal 0.05 m. imber 0.9 EUI		Yield of chi	ps 29.3%		Yield of sawd	lust 13%		
204 2								5 6 7 8		
Size Length QTY	201 202 203 203	205 206 205	210 209 211 209		576 576 576	228 229 230	231 232 233 234 234	235 236 240 241	242 243 244 245 245 245	247 248 249 249 250
26x30 2.45 12.00 45x100 2.45 2.00	Timber	1 2	3 4	5	6 7	8	9 10	11 12	13 14	15 🔺
40×100 2.40 2.00	12x30	1 2	3 4	5	6 7		9 10	11 12	13 14	15
	24x45 24x60	12 1 1 13	2 5 15 3	8	10 13 4 6		15 3 8 9	4 6 11 10	7 9 12 14	5
	24x80 24x80	15 12	10 3	8	4 0		3 4	5 6	7 9	11
	24x180	12 15	8 3	2	4 10	13	14 5	6 7	9 11	1
	26x30	1 2	3 4	5	6 7	8	9 10	11 12	13 14	15 🗸

Assumption: Diameters with greater score can be cumulated. This way is preserved greater average yield.

Method:

Let's take chart similar to previous picture. On the beginning of optimization there is number of boxes equal to number of available diameters for which we have input data (created from FlexiCut2 optimization). Our task is reduce number of boxes to requested value.

In each iteration we split two boxes into one. (remove one box). Iterations are repeated until number of boxes are not on requested value.

<u>STEP 1</u>

Box (diameter)	Score	Contains diameters
205	9	205
206	3	206
207	4	207
213	2	213
214	1	214
218	5	218

1. We find box (diameter) with the greatest score. In our case it is 205

- 2. For this box (205) we find neighbor box, whith greater score. It is box 206.
- 3. New box will contain diameters 205 and 206 and new score will be 6 (it is average value from score 9 and 3).
- 4. (steps 1 3) are repeated until number of boxes is not equal the value we need

(further steps are for illustration, how optimization works)

<u>STEP 2</u>

Box (diameter)	Score	Contains diameters
205	6	205, 206
207	4	207
213	2	213
214	1	214
218	5	218

- 5. We found box with the greatest score. It is 205.
- 6. For this box we found neighbor box with greater score. It is box 207 (score = 4)
- 7. New box will contain diameter (205, 206, 207) and new score will be average = 5.33

<u>STEP 3</u>

Box (diameter)	Score	Contains diameters
205	5,333	205, 206, 207
213	2	213
214	1	214
218	5	218

Results are 4 boxy:

Box number	Diameter from
1	205
2	213
3	214
4	218

Dividing maximum values

i⇔i Sortir Load	ng optimizatio	n ave 5	Number of diameters	vith the be	st yield						Cal		×
SED 200 201	Middle board Score 10 15	•	Number of Yield of	fboxes [Chir	0	Reducti Dividing	on of the s on of the b g maximum g minimum	n values n values	me 0.0112 m3		
202	10		Timber volun				d of chips			Yield of sawd			
203 204	6		Price of	timber 0	9 EUR								
Size 26x30 12x30	Yield 57.7 53.1	Score 5 5		2	3 4	5	6			8			
Size	Length	QTY	201 200 200 201 201 201 201 201 201 201	205 206 206	209 209 210	2112		225 226	229	231 232 233 234 234 235	235 236 240 241 242 242	243 244 245 245 247 248 248 248 248	250
26x30	2.45	12.00	Timber	1	2 3	4	5 6	7	8	9 10			*
45x100	2.45	2.00	12x30	1	2 3	4	56	7	8	9 10			
			24x45		8 9		5 1	2		6 4			-
			24x60		1 3	-	6 8	10	-	9 7			
			24x80 24x180		89 97	-	4 7 1 5	6 8	-	1 2 6 3			
			24x180		2 3	-	7 5	6		o 3 9 10			

This optimization makes border between boxes on local maximum score (peak).

For example, in case of box *i* is it's score greater than score of box*i-1* and greater than score of box *i+1*, Special case is, that score of box *i+1* (*i+2*...*i+n*) is the same as score of box *i* but greater than *i+n+1*. Then border of box is set on first diameter – box *i*.

It means, that maximum number of boxes is equal to number of those 'peaks'.

Let's take number of peaks = m. While is number of boxes lower (x), then previous box number i belongs to new box with number f (from interval 1 - x), where f = i * (x / m).

It means, that in first step we found all peaks, where are borders of sorting boxes. Then base on needs are boxes merged.

Dividing minimum values

	ng optimizatio											-	ſ		•				x
Load		Save 5	Number of diameters v	vith the b	est yield									<u> </u>	<u>C</u> alcu	late		X	
	Middle board	•	 Number of 	fboxes	15 🌲						smalles biggiest								
	-					-					um value								
SED 200	▲ Score 10								-		m values								
200	15																		
201	10			timber 5			hips volu						ime 0.0						
202	6		Timber volum			Yi	eld of ch	ips 29.3	3%		Yield	ofsawo	lust 13°	6					
203	2		Price of	timber (J.5 EUR														
Size	Yield	Score				Le.			17		la.		10			10		la a	
26x30	57.7	5			3 4	5	6		1		8		9			10		11	
12x30	53.1	5																	
Size	Length	QTY	23 23 29	202 Ja	207 208 209	210 211 220	221	223 224 224	226	229 230	231 232	234 234	235	241	243	245 245	246 247	248 249	250
26x30	2.45	12.00						-	-	-	-								
45x100	2.45	2.00	Timber	1	2 3	4	5	6	7	8	9	10	11						
			12x30 24x45		2 3 9 10	4	5 8	6 1	7 2	8 3	9 6	10 4	11 5						Ξ
			24x45 24x60		3 2	1	4	8	2	3 7	9	4	6						
			24x80	-	7 10	9	5	6	8	4	1	2	3						
			24x180		9 10	3	2	4	8	5		6	1						
			26x30		2 3	4	6	5	7	8	9	10	11						

This optimization makes border between boxes on local minimum of score.

For example, in case of box *i* is it's score lower than score of box*i-1* and lower than score of box *i+1*, Special case is, that score of box *i+1* (*i+2*...*i+n*) is the same as score of box *i* but lower than *i+n+1*. Then border of box is set on first diameter – box *i*.

It means, that maximum of boxes is equal to number of those 'lows'

Let's take number of minims = m. While is number of boxes lower (x), then previous box number i belongs to new box with number f (from interval 1 - x), where f = i * (x / m).

It means, that in first step we found all minims, where are borders of sorting boxes. Then base on needs are boxes merged.

Cummulative results

								-		x
Load Save 5 N	umber of diameters with the	best yield					<u></u>	<u>Calculate</u>		X
Middle board SED Score N CO 10 CO 15 CO	Number of boxes		Chins ve	 Reduce Dividi 	ction of the sm ction of the big ing maximum v ing minimum v	igiest values values	ume 0.0112 n			
202 10 203 6 204 2	Timber volume total Price of timber	0.05 m3		hips 29.3%		Yield of sawc				
Size Yield Score 26x30 57.7 5 12x30 53.1 5	1 2 3 4 5 2 000 000 000 000 000 000 000 0	3 3 6 4 7 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	6	223 224 225 226	7 2 300 627 827 828	48	235 236 241 241 241 241 8 241		120 13 14 15 376 577 578 578 578 578 578 578 578	
26x30 2.45 12.00 45x100 2.45 2.00	Timber 1 12x30 1 24x45 9 24x60 10 24x80 14 24x180 13 26x30 1	2 3 2 3 10 11 4 5 15 7 14 15 2 3	4 5 4 5 1 1 14 7 2 10 12 10 12 4 5	6 7 6 7 15 12 3 6 13 5 5 4 6 10	8 9 8 9 1 2 9 12 6 8 3 6 7 8	10 3	11 12 11 12 4 5 15 8 11 4 11 9 11 12	13 1 13 1 6 7 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1	8 1 1 3 2	

In case, that all results are shown, then we have in one chart all optimizations shown in different colors. Double-click on color field you can change color for particular optimization. Modifying of boxes and lower table is bind to optimization, which is selected....

5. Export results

Results of optimization can be exported into MS Excel:

After press button [X] you are prompted for output file name.

A	В	С	D	E	F	G	Н	I.	J	К	L	М	N	0	Р	
Box	From															
1	0															
2	204															
3	207															
4	209															
5	211															
6	221															
7	226															
8	231															
9	236															
10	244															
11	248															
Timber	1	2	3		5		7	8			11					
12x30	1	2	3	4	5	6	7	8	9	10	11					
24x45	7	9	10	11	8	1	2	3	6	4	5					
24x60	5	3	2		4	_	10	7	9	11	6					
24x80	11	7	10		5		8	4	1	2	3					
24x180	11	9	10	3	2		8	5	7	6	1					
26x30	1	2	3	4	6		7	8	9	10	11					
30x60	3	4	2	1	5	7	11	10	8	9	6					
45x100	7	9	11	10	8	5	1	2	3	4	6					
50x200					7	5	6	2	1	3	4					
80x200						6	1	2	3	4	5					
90x150	5	6	3		7	8	10	9	11	2	1					
95x160	1	2	5	3	4	6	7	8	10	9	11					

Example of resulted MS Excel file:

You can see, that for each optimization method there is separate sheet. Firstly, there is table, where you have sorting boxes. For each sorting box you have started sawlog diameter.

Below is table, where is for each middle board assigned particular box by priority. So for example, base on image above. For timber 24x45 is the best to take sawlogs from box #6, where are sawlogs with diameters 221mm -225mm (or 225.9999, as you wish)

Of course, base on selected optimization you get different results. It is base on your opinion and technology, which one to choose.

6. System requirements

System requirements are the same as requirements for CutLog software.

For running and using of software is necessary to fulfill some base requirements. Systems base on Windows 95 and 98 are not supported, because they are obsolete.

Hardware – minimum requirements:

(base on Windows 2000 professional and .NET Framework 2.0 Redistributable)

Processor:	Pentium compatible processor 133 MHz or newer
RAM:	minimum 64MB
Hard Disk:	2GB
VGA:	1024x768 a greater resolution. At least 256 colors

Hardware – recommended:

(base on Windows XP professional system and .NET Framework 2.0 Redistributable)

Processor:	Pentium compatible processor 1 GHz or newer
RAM:	minimum 128MB
Hard Disk:	2GB
VGA:	1024x768 and greater resolution. At least 32 bit colors

Operating system:

Windows 2000 and newer

Windows 7 is recommended (32 or 64 bit versions)

CutLog software is compatible with Windows 7 and it can be used on both - 32 and 64 bit versions of system.

Others: For exporting into MS Excel, it is necessary to hav MS Office installed, or at least MS Excel

Links:

.NET framework 2.0 requirements: http://msdn.microsoft.com/netframework/technologyinfo/sysregs/default.aspx

Windows 2000 System requirements:

http://www.microsoft.com/windows2000/professional/evaluation/sysregs/default.asp

Windows XP Professional system requirements:

http://www.microsoft.com/windowsxp/pro/evaluation/sysregs.mspx

Microsoft .NET Framework Version 2.0 Redistributable Package (x86) http://www.microsoft.com/downloads/details.aspx?FamilyID=0856eacb-4362-4b0d-8eddaab15c5e04f5&DisplavLang=en

Microsoft .NET Framework Version 2.0 Redistributable Package (x64) http://www.microsoft.com/downloads/details.aspx?FamilyID=b44a0000-acf8-4fa1-affb-40e78d788b00&DisplayLang=en

Microsoft .NET Framework Version 2.0 Redistributable Package (IA64) http://www.microsoft.com/downloads/details.aspx?FamilyID=53c2548b-bec7-4ab4-8cbe-33e07cfc83a7&DisplayLang=en